Numerical optimization of radiation shielding of target used for production of ^{18}F

BgNs INTERNATIONAL CONFERENCE NUCLEAR ENERGY FOR THE PEOPLE

10 - 13 September, 2018, Garden of Eden Resort, Sveti Vlas, Bulgaria

A. Demerdjiev, INRNE-BAS
Contents

› Introduction
 › INRNE cyclotron Physics Laboratory
 › Radiological characterization of the cyclotron vault - FLUKA
› Description of the model
 › Local target shielding
 › Modeling domain – simplified spherical geometry
› Results and discussion
 › Nuclides in inner concrete layer
› Summary
Introduction

TR24 Cyclotron parameters:
› ACSI, Vancouver, Canada
› Beam Energy: 15 – 24 MeV
› Beam Current: 400 µA
› Upgradeable to 1 mA

PET: ^{11}C, ^{13}N, ^{15}O, ^{18}F, ^{124}I, ^{64}Cu, ^{68}Ge

SPECT: ^{123}I, ^{111}In, ^{67}Ga, ^{57}Co, ^{99m}Tc

Cyclotron Physics laboratory current status:
› cyclotron successfully delivered - 12.01.2016
› cyclotron center building has to be build
› current research activity - numerical studies on the possibilities to produce various medical isotopes; radiological characterization of the setup.
Beamlines, targets and target stations for PET&SPECT radioisotopes

A. Demerdjie <Numerical optimization of radiation shielding of target used for production of 18F>
Radiological characterization

Evaluate internal hazards:

› Nuclides in target body
› Define nuclides expected to be produced over the operation time of the machine and the vault
› Check vault radiation specs w.r.t. neutrons and gamma rays
› Define cooling time - short lived nuclides (airborn ^{41}Ar?)
› Check operators dose rate

Monte-Carlo approach
FLUKA used for simulations
Radiological characterization

› Emission and transport of secondary particles due to primary nuclear reaction
 › low energy neutron transport
 › takes into account the geometry of the impinging beam (e.g. point source)
› Assessment of the produced residual nuclei
› Possibility to score the same physics process at different irradiation & cooling times
 › buildup and decay of waste

› Not possible to include missing X-section libraries

Two-step approach to estimate fluence/waste within the vault

› Simulate target irradiation, assess secondary particles
 › \((p, n), (p, \gamma)\)
› Use secondary particles as source irradiating vault components
18F high-current liquid target

› Delivered 3.8 mL targets
› Check thick target yield in 18O(p, n)18F
› Pipe secondary particles to be used as source irradiating the vault
A proton beam (various E, fixed I) impinges on a simple target

Thick target – the reaction takes place with the volume of enriched water.

The lower the beam energy, the better the agreement:

- Real beam not gaussian in any plane, not point-like, no experimental data on phase space
- The FLUKA model is limited in terms of energy
Secondary particles – real target: density distribution

- beam orientation w.r.t. target
- rate of emission of secondaries

Fixed (E, I) beam
Secondary particles – real target: energy spectrum

100μA, 18 MeV: 3e10 n/(s.cm²)

400μA, 24 MeV: 2.5e11 n/(s.cm²)

*15 μA, 17 MeV

2.44e10 n/(s.cm²)

*Sadat-Eshkevar et al, Assessment of the staff absorbed dose related to cyclotron operation and service in the production of ¹⁸F radiopharmaceuticals, Nukleonika 2012; 57 (3):407-410

Neutron and gamma spectra for two different proton beam energies. The secondary particle count is scored in a 4-π volume surrounding the target.
Description of the volume

- Source of secondary particles → geometrical center
- Target material irradiation → one month, six hours daily, five days per week
- 18F-target, neutrons emitted → scored and written in files → neutron source irradiating the vault
- FLUKA → particle transport; nuclides’ activities
- Geometry:
 - At the center → sphere $R = 20$ cm (air)
 - Spherical shell with thickness of 250 cm:
 - Innermost layer 5 cm;
 - Second layer 25 cm;
 - Second and third shells → concrete with Portland cement

Two cases of chemical composition of the innermost layer: concrete with Portland cement, borated polyethylene.

Preliminary results

Worst case scenario: target and local shielding close to the vault walls
Results and discussion: Nuclides in the first 25 cm

After a month of cooling

› Nuclides in the first concrete layer for the two cases without (left) and with borated polyethylene local target shielding.
Results and discussion: Nuclides in concrete layer behind shielding

Activities in [Bq] of some of the nuclides generated in the first 25 cm thick layer behind the shielding. The borated polyethylene layer here has thickness of 5 cm.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>High-density concrete</th>
<th>Borated polyethylene</th>
<th>Parent nucleus</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{55}Fe</td>
<td>1.0×10^6</td>
<td>9.4×10^5</td>
<td>^{55}Mn</td>
</tr>
<tr>
<td>^{45}Ca</td>
<td>3.9×10^6</td>
<td>3.9×10^6</td>
<td>^{44}Ca</td>
</tr>
<tr>
<td>^{41}Ca</td>
<td>472</td>
<td>491</td>
<td>^{40}Ca</td>
</tr>
<tr>
<td>^{39}Ar</td>
<td>3264</td>
<td>2164</td>
<td>^{39}K</td>
</tr>
<tr>
<td>^{37}Ar</td>
<td>1.5×10^6</td>
<td>7.5×10^6</td>
<td>^{40}Ca</td>
</tr>
</tbody>
</table>

Independently from the chemical composition of the innermost shielding, the two cases show similar levels of activities for the nuclides seen.
Using Monte-Carlo simulations the distribution of radionuclides outside of a local target shielding within a layer of 25 cm of a vault is obtained.

Preliminary results showing considering the activity of long-living nuclides a layer of 5 cm is preferable over no shielded high-density concrete but it is not sufficient.

Possible next steps are: changing the concrete recipe with one containing marble (e.g. reduced content of Si); studying the effect of changing the position of the borated polyethylene layer within the vault wall; and optimizing the thickness of the local shielding.
Thank you for the attention!

G. Asova, N. Goutev, D. Tonev